Data & Analytics Capgemini: Business Analytics (UK)

12 key components of your data and analytics capability

Author

George Hodgson-Abbott

January 20, 2017

When we talk to our clients about data and analytics, conversation often turns to topics such as machine learning, artificial intelligence and the internet of things.

Whilst these are subjects that excite us as much as our clients, we know there are a number of things that organisations have to get right before they can truly get the most out of analytics.

There are lots of things to consider, but there are 12 key components that we recognise in every successful data and analytics capability.

  1. Roadmap and operating model

An operating model turns a vision and strategy into tangible organisational outcomes and changes. It is a single view of the capabilities within an organisation and the way in which they deliver services internally, and to their customers.

Without a robust operating model, organisations will not have a sustainable design for the structure, processes and capabilities needed to manage data effectively and benefit from the insight generated through the application of analytics.

  1. Platform and data architecture

The right platform gives organisations the ability to store, process and analyse their data at scale. Modern, open-source data platforms developed by the likes of Facebook, Yahoo and Google have made data storage cheaper, whilst making data processing far more powerful.

If data is the fuel, analytics the engine, then the platform is the chassis.

  1. Data security

Organisations need to ensure their data is stored, transformed & exploited in a way that doesn’t compromise security.

Data security, and the consequences of getting it wrong, is a hugely important part of a data and analytics journey. Insight and analysis should not come at the expense of data security.

  1. Data governance and standards

Data governance is one of the least visible aspects of a data and analytics solution, but very critical. It includes the management and policing of how data is collected, stored, processed and used within an organisation.

Effective governance is not a one-time exercise, but a fully developed and continuous process.

  1. Software and tooling

Whether it is a simple report or performing advanced machine learning algorithms, an analyst is nothing without their tool.

Finding the right combination of tools is a challenge – there are a lot of them! That means considering everything from the techniques analysts want to apply to how they fit in with your data security and data architecture.

  1. Legacy migration

Organisations may need to migrate and transform legacy business services onto a new platform to deliver new insight at a lower cost.

When a client takes the bold step to upgrade their data or analytics capability they might think the job is done upon completion of the implementation phase.  However, to drive the value from their investment they also need to migrate existing analytical capabilities and services to their new technology. 

  1. Data acquisition

Data volumes are exploding; more data has been produced in the last two years than in the entire history of the human race.

Traditional business data sources, such as data from EPoS, CRM and ERP systems are being enriched with a wider range of external data, such as social media, mobile and devices connected to the Internet of Things.

Organisations need to identify which data sources will add the most value to them, and develop ingestion patterns that make them easy to access and safe to store.

  1. Skills and roles

It is becoming increasingly difficult for our clients to find the right skills they need to put data and analytics at the heart of their organisations. “What does a data scientist do?” “Where can we find a data scientist?” “What skills do our people need?” These are the questions they are asking us every day.

The people are the most important part of any business, so hiring the right people with the right capabilities, giving them a platform to improve and develop and keeping pace with industry best practice / new technology is critical for all of our clients.

  1. Business intelligence and reporting

It is vital for organisations to understand their performance, identify trends and inform decision making at all levels of management.

Without a strong BI capability they aren’t able to detect significant events or monitor changes, and therefore aren’t able to adapt quickly.

  1. Insights and analysis

Many organisations are acquiring more and more data from various sources. However, data is only valuable if they can extract value from it.

Insights and analysis allows our customers to rapidly get valuable insight from their data using visualisations to spot trends in their data allowing them to make critical business decisions based on fact giving them a competitive advantage.

  1. Real-time analytics

Industry leaders are moving towards real-time, probability based and predictive analytical approaches. Organisations can now deliver ‘real-time’ analytical capability to have the best of both worlds; digital customer experiences that are analytically assessed and secure.

This is a change from reactive organisations to one that actively drives proactive interaction with customer through real time, in the moment, analytics.

  1. Advanced analytics

The pinnacle of a data and analytics capability is the application of advanced analytics to discover deep insights, make predictions and generate recommendations.

Predictive analytics, text mining, machine learning and AI are all making great strides across all industries. With the right people, data and technology, all organisations are able to take advantage of these capabilities.

 

This article was written by George Hodgson-Abbott from Capgemini: Business Analytics (UK) and was legally licensed through the NewsCred publisher network.

Great ! Thanks for your subscription !

You will soon receive the first Content Loop Newsletter